
FRACTALIZATON CODE
1. Overview
It would be nice to present fractalization code which anybody could run, but with an estimated 4000 computer languages in existence the choice of a language is quite problematic.  The language here is C (not C++).  C is widely used and well documented.  The code is thought to comply with K&R-89 C.  An effort has been made to minimize the amount of "outside" code, so that the user can see the entire computation process.
Those interested in getting involved with statistical geometry may find worked code examples to be useful, as they show the methodology and ideas as one implements them in practice.  The code described here allows one to fractalize regular polygons with 3, 4, 5, … sides, with arbitrary random orientation angles at each trial, and with either inclusive or periodic boundary conditions.  (In fact the code does not allow more than 14-sided polygons due to limitations of storage, etc.)  It thus allows testing of many different shapes with differing degrees of compactness.  Simpler fractalization code for circles, nonrotated squares, and annular rings is included for completeness.
An object of this work is to provide those new to the subject with a set of computation routines that they can "play with" and see how the algorithm behaves.  The major parameters such as c and N and number of shapes placed are all user-specified.  Both periodic and inclusive boundary examples are included.
The code is written in standard C.  Thus the user must be familiar with how to compile and run C code.  For those familiar with computer programming it should be relatively easy to convert the basic method to other computer languages.  Since statistical geometry is basically about images, graphics is required.  This can be done in any number of ways, but is done in a very simple way here.  We use fprintf statements to place "generic Postscript" vector graphics statements in the graphics output file, which has a .ps extender.  The resulting file can be opened with Photoshop or Photoshop Elements or certain other programs.  Upon opening it must be rasterized to get a printable and viewable image, and the user will need to supply width, height, and pixels/inch information.  The rasterized image can then be saved in a variety of standard formats.  The default page size for generic Postscript is 8.5x11 inches, and the user can see how a workaround is made in the code which allows any size image to be produced if the right height and width are supplied at rasterization.
It will be seen that the inclusive and periodic boundary cases are implemented by separate routines.  A simple test of the area and size sequences for squares is also included.
One often uses temporary test routines to debug a program, and then omits them from the finished product (like the removal of scaffolds at the end of a construction job).  Some of the test "scaffolding" is included here and can be deleted if the user wishes.  The most obvious of these are the lines which print out parameters at every placement with printf statements.  High-c runs can take a long time and these screen print-outs give useful information on how it is developing and how fast it is running.  A test routine which verifies matching of drawing, overlap testing, and test points is also included.

It should be understood that the rotation angle  of the polygons is varied at each trial.  The net effect of this is to align later shape sides to earlier ones in a coherent fashion.  This angle is varied within a random range 0 to 2/n where n is the number of sides.

There are two routines for computing the Hurwitz zeta function.  The routine zeta_hurw2 assumes that N is an integer, while zeta_hurw3 allows it to be a real (float) number.  All of the fractalization routines have been converted to the "any N " version.  (N is required to be an integer in all of my prior work, so this is a significant change.)  It should be noted that for quite small N (say 0.3) the first shape becomes hugely larger than any other so that it will not fit into a given area except for c values quite close to 1.  The accuracy of the zeta computation has not been tested for values close to N = 0 and the code contains a warning about this.  The "brute force" method which is used for the zeta computation has the feature that the computation time becomes quite long as c approaches 1 (from above) and the use of c values only slightly above 1 is not recommended.
There are two ways to handle the boundaries.  For "inclusive" boundaries every shape must lie entirely within the image.  With "periodic" boundaries the shapes cross the boundaries repetitively and one can "tile" the images to produce larger repeating patterns.  The ability to tile the images is important in some art and design areas such as fabric design.  Inclusive and periodic boundaries have substantially different properties with regard to run time, number of trials, maximum c, etc.
2. Method
The basic algorithm has been described elsewhere and is not repeated here.

As defined, the code executes five kinds of fractalization and produces a set of 11 output files with a modest number of shapes each.  It provides examples of all of the fractalization routines.  The user familiar with programming can readily modify the program for a wide variety of fractalizations.

The overlap tests for the nonrotated square, circle, and annular ring cases will be seen to be quite simple.

A central question is how to do the overlap test for the all-angles cases.  The method adopted here is to develop a test which determines if an x,y point lies within a polygon shape, returning a 1 if it does and a 0 if it does not.  The other part of the test is to compute points on the periphery (here at the vertices) of shape A, which are then tested as to whether they lie within shape B.  The edge of shape A is thus "sampled" only at a finite number of points.  It will be seen that the code tests both "does shape A overlap B?" and "does shape B overlap A?"  
Does this finite number of points suffice?  Consider polygons with 4, 5, … sides and test points at the vertices.  Imagine two such polygons and think about the ways they can overlap.  A bit of study will show that one cannot overlap the two without getting at least one vertex point inside the other.  (A formal proof of this is lacking.)  This scheme still has one problem -- it fails to detect overlap when two polygons of nearly the same size have nearly-coincident centers and are rotated by about half of the repeat angle.  In this case all of the vertices of B may lie outside of A and vice versa.  This can be overcome by including another test point at the center of the polygon.  Thus for 4 sides we have test points numbered 0, 1, 2, 3, 4.  The accuracy of this test is believed to be the accuracy of the floating point numbers used, i.e., with infinite precision of the numbers it would be exact.
The basic overlap test shape is a triangle with vertices at the center and two adjacent outer vertices.  A polygon with n sides can be tested by testing n such segments and ORing the results together.  This may not be the most efficient way to do the test, but it has the virtue of working with a variable number of sides.  It gets rather slow for large numbers of sides (I have not tried more than six since the results appear to approach those for circles with large n).
The triangle case is an exception.  The point of a large triangle can stick through the point of a small one at an angle such that none of its vertices is inside (the point of the large triangle is "on the other side" of the small one from its other two vertices).  The solution adopted for this is to have many test points along each side, concentrated near the vertices.  Complete coverage of all overlap possibilities would apparently require an infinite number of such test points, so for triangles the overlap test is quite good but not "exact".

The beginner is cautioned that the algorithm does not run for an arbitrary value of c.  There is always a largest usable c value which depends substantially upon the shape.  When it is exceeded the algorithm simply does not complete -- it goes on making trials for the first few placements until the (usually large) maximum number of trials is exceeded and then quits.  If uncertain start with a low value of c (e.g., c = 1.15) and work up slowly.
The periodic case always runs slower than the inclusive one (with equivalent parameters) because a larger number of computations is needed.

Calling any C function which begins void place_ fractalizes the given shape and provides both a graphics and a text output.  The other routines and functions are the "supporting cast" called as needed.  The routine void place_circle_inclusive is included for completeness, and creates circle fractals.  The user will note how very simple this code is compared to the variable-angle polygons.  The routine void place_polygon_inclusive(  creates polygon fractals with inclusive boundaries, and the routine void place_polygon_periodic( creates polygon fractals with periodic boundaries.  The routine void place_sq_in_circ_inclusive( places squares within a circle and offers an example of how to cope with the associated outer boundary problem.  For reasons which are not obvious this routine runs somewhat faster than square-in-square for high c values, so that fill percentages exceeding 99% can be attained.  The routine void place_ring_inclusive( fractalizes annular rings, providing an example of how the algorithm works with hollow shapes.  The ratio of inner and outer diameters of the annular ring is varied by the parameter rratio.  The maximum c value for rings varies greatly as a function of rratio, with high c corresponding to low rratio (small holes).  The routine place_diam_square_periodic( is a modification of the general "periodic" routine which alternates the rotation of squares between 0 and 45° at placement.  When c is high (c ( 1.50) this gives almost complete separation into diamond and square areas.
A text file called textmessage is produced as part of the output; it serves as a scratchpad for recording important run data such as the total number of trials needed and the run time in seconds.
The function read_printimage_polygon( allows one to read the text file data and draw a new version of the image without repeating the (slow) fractalization routine.  This allows one to produce images of the same fractalization with different color schemes.

The routine wrtcolor(float r, float g, float b) writes standard RGB colors.  For example black is wrtcolor(0,0,0), white is wrtcolor(255,255,255), and pure red is wrtcolor(255,0,0). 
The two routines beginning check_square( run through the sequence of area calculations for squares but do not perform the algorithm.  They run fast and can be used to answer questions like "How many placements are needed for x% fill?" with given values of c and N.
The routine wrt_cyclic_color3(float phase) deserves comment.  It is used for coloring shapes cyclically.  As the parameter phase is varied from 0 to 2 the color passes along a closed repeating orbit in color space.  The calculations have been developed so as to produce colors which when converted to grayscale are close to 50% gray (i.e., the same luminance or "value").  It is used to color the variable-angle shapes according to orientation, with the color the same for each orientation angle.  This makes it easier to see correlation effects (which occur predominantly at high c where many trials are needed for each placement).  This routine is also used for log-periodic color schemes.
3. Variations
The polygon code is quite general, allowing all of the regular polygon shapes and two different boundary conditions (inclusive and periodic).  As the code is written each polygon has a random orientation angle at each trial.  The key feature of orientation is the choice of the angular variable theta1 in the code (the trial value of orientation angle ).  By a minor rewrite of the code one can make  fixed, make it alternate between two (or more) values at placement, etc.  Alternating squares-and-diamonds fractals can be created by making alternate squares have  = 0 and  as shown by an example (see  place_diam_square_periodic( ).
One of the outputs is a text file containing all of the data for each placement.  This can be used in a variety of ways for statistical studies, etc.  A routine is provided which can read this data and make images with a variety of color schemes.  Some users may want to create their own coloring algorithms as it is commonly found that the color scheme can make a huge difference in how the viewer perceives the pattern.  The data items for polygons are the x,y positions of the center of the shape, the radius r from the center to the vertices, the orientation angle in radians, and the cumulative number of trials at a given placement.  The integer variable nfac is mainly applicable to the periodic case.  The unique first shape has nfac = 1, while the copies required for periodicity have nfac = 0.  For the inclusive case nfac = 1 for all shapes.  The nfac parameter is used in drawing the images.  Any shape which crosses the boundary will have one or more redundant copies needed for periodicity.  This shape and its copies need to be the same color in the images, and the nfac parameter allows this.  A dummy nfac parameter is included in the inclusive cases so that the text output files have the same format.
4. Results
The table below gives representative maximum usable c values.  (The lower limit on c is 1+.)  The criterion used is "the c value which averages about 1000 trials per placement with 300 placements".  The results will vary somewhat with N.  In practice one can go to substantially higher c values if one is willing to tolerate a long run time (many trials per placement).
	case
	N
	approx max c
	av. trials for n=300

	triangle inclusive
	2
	1.31
	1095

	triangle periodic
	2
	1.33
	1324

	square inclusive
	2
	1.355
	1012

	square periodic
	2
	1.38
	1157

	pentagon inclusive
	2
	1.36
	1022

	pentagon periodic
	2
	1.39
	1293

	hexagon inclusive
	2
	1.38
	1261

	hexagon periodic
	2
	1.40
	994

	circle inclusive
	2
	1.40
	1143


Comments:  The triangle values with rotation are substantially higher than the best one can do with same-orientation triangles (c ( 1.24) and somewhat lower than the best that has been done with oppositely-oriented triangles (c ( 1.40).  The values for squares are substantially lower than the best values with same-orientation squares (c ( 1.52-1.55).  Unsurprisingly, as the number of sides increases the c values approach those seen for circles.  The periodic case always has a slightly higher c value, although it may run more slowly with a given number of shapes.  The highest c values (up to about 1.50) are attained for squares in a circle, where 99% fill has been achieved with modest run times.
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